Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.500
Filter
1.
Int J Legal Med ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38664248

ABSTRACT

Sudden unexpected postnatal collapse (SUPC) is a sudden collapse of the clinical conditions of a full-term or near-term newborn, within the first 7 days of life, that requires resuscitation with positive ventilation and who either dies, has hypoxic-ischemic encephalopathy, or requires intensive care. The incidence of SUPC is very low, and most often presents a negative prognosis. The BUB1B gene is a mitotic checkpoint of serine/threonine kinase B that encodes a protein crucial for maintaining the correct number of chromosomes during cell division. Mutations in the BUB1B gene are linked to mosaic variegated aneuploidy syndrome 1 (MVA1), a rare autosomal recessive disorder characterized by diffuse mosaic aneuploidies involving several chromosomes and tissues. This paper discusses a case of a newborn who had a spontaneous delivery. After 2 h and 10 min, the infant showed generalized hypotonia and cyanosis, and his doctors performed orotracheal intubation, cardiac massage, pharmacological hemodynamic therapy, mechanical ventilation, antibiotic therapy, and hypothermic treatment. The newborn was discharged after 5 months with the diagnosis of hypoxic-ischemic encephalopathy. Suspecting an SUPC, a complete genetic analysis was performed demonstrating a compound heterozygous mutations in the BUB1B gene. The newborn died at 6 months of life, 1 month after discharge. A complete autopsy was performed, determining that the cause of death was due to sepsis starting from a brocopneumonic process, with outcomes of hypoxic-ischemic encephalopathy (HIE). In this scenario, it is not possible to demonstrate the causal effect of this mutation, considering that it could play a causal or concausal role in the onset of SUPC. Further research based on multicenter studies, as well as on animal models, could be very useful to clarify the pathological effect of this mutation.

2.
Proc Natl Acad Sci U S A ; 121(16): e2309621121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38588415

ABSTRACT

Chromosomal instability (CIN) is the persistent reshuffling of cancer karyotypes via chromosome mis-segregation during cell division. In cancer, CIN exists at varying levels that have differential effects on tumor progression. However, mis-segregation rates remain challenging to assess in human cancer despite an array of available measures. We evaluated measures of CIN by comparing quantitative methods using specific, inducible phenotypic CIN models of chromosome bridges, pseudobipolar spindles, multipolar spindles, and polar chromosomes. For each, we measured CIN fixed and timelapse fluorescence microscopy, chromosome spreads, six-centromere FISH, bulk transcriptomics, and single-cell DNA sequencing (scDNAseq). As expected, microscopy of tumor cells in live and fixed samples significantly correlated (R = 0.72; P < 0.001) and sensitively detect CIN. Cytogenetics approaches include chromosome spreads and 6-centromere FISH, which also significantly correlate (R = 0.76; P < 0.001) but had limited sensitivity for lower rates of CIN. Bulk genomic DNA signatures and bulk transcriptomic scores, CIN70 and HET70, did not detect CIN. By contrast, scDNAseq detects CIN with high sensitivity, and significantly correlates with imaging methods (R = 0.82; P < 0.001). In summary, single-cell methods such as imaging, cytogenetics, and scDNAseq can measure CIN, with the latter being the most comprehensive method accessible to clinical samples. To facilitate the comparison of CIN rates between phenotypes and methods, we propose a standardized unit of CIN: Mis-segregations per Diploid Division. This systematic analysis of common CIN measures highlights the superiority of single-cell methods and provides guidance for measuring CIN in the clinical setting.


Subject(s)
Chromosomal Instability , Neoplasms , Humans , Cell Line, Tumor , Chromosomal Instability/genetics , Centromere , Karyotyping , Gene Expression Profiling , Chromosome Segregation , Aneuploidy
3.
Front Genet ; 15: 1359231, 2024.
Article in English | MEDLINE | ID: mdl-38660675

ABSTRACT

Background: The diagnosis of Precancerous Lesions of Gastric Cancer (PLGC) is challenging in clinical practice. We conducted a clinical study by analyzing the information of relevant chromosome copy number variations (CNV) in the TCGA database followed by the UCAD technique to evaluate the value of Chromosomal Instability (CIN) assay in the diagnosis of PLGC. Methods: Based on the screening of gastric cancer related data in TCGA database, CNV analysis was performed to explore the information of chromosome CNV related to gastric cancer. Based on the gastroscopic pathology results, 12 specimens of patients with severe atrophy were screened to analyze the paraffin specimens of gastric mucosa by UCAD technology, and to explore the influence of related factors on them. Results: The results of CNV in TCGA database suggested that chromosome 7, 8, and 17 amplification was obvious in patients with gastric cancer. UCAD results confirmed that in 12 patients with pathologic diagnosis of severe atrophy, five of them had positive results of CIN, with a positive detection rate of 41.7%, which was mainly manifested in chromosome seven and chromosome eight segments amplification. We also found that intestinalization and HP infection were less associated with CIN. And the sensitivity of CIN measurement results was significantly better than that of tumor indicators. Conclusion: The findings suggest that the diagnosis of PLGC can be aided by UCAD detection of CIN, of which Chr7 and 8 may be closely related to PLGC.

4.
bioRxiv ; 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38645209

ABSTRACT

Although implicated as deleterious in many organisms, aneuploidy can underlie rapid phenotypic evolution. However, aneuploidy will only be maintained if the benefit outweighs the cost, which remains incompletely understood. To quantify this cost and the molecular determinants behind it, we generated a panel of chromosome duplications in Saccharomyces cerevisiae and applied comparative modeling and molecular validation to understand aneuploidy toxicity. We show that 74-94% of the variance in aneuploid strains' growth rates is explained by the additive cost of genes on each chromosome, measured for single-gene duplications using a genomic library, along with the deleterious contribution of snoRNAs and beneficial effects of tRNAs. Machine learning to identify properties of detrimental gene duplicates provided no support for the balance hypothesis of aneuploidy toxicity and instead identified gene length as the best predictor of toxicity. Our results present a generalized framework for the cost of aneuploidy with implications for disease biology and evolution.

5.
Ageing Res Rev ; 97: 102292, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38582380

ABSTRACT

Age-related aneuploidy in human oocytes is a major factor contributing to decreased fertility and adverse reproductive outcomes. As females age, their oocytes are more prone to meiotic chromosome segregation errors, leading primarily to aneuploidy. Elevated aneuploidy rates have also been observed in oocytes from very young, prepubertal conceptions. A key barrier to developing effective treatments for age-related oocyte aneuploidy is our incomplete understanding of the molecular mechanisms involved. The challenge is becoming increasingly critical as more people choose to delay childbearing, a trend that has significant societal implications. In this review, we summarize current knowledge regarding the process of oocyte meiosis and folliculogenesis, highlighting the relationship between age and chromosomal aberrations in oocytes and embryos, and integrate proposed mechanisms of age-related meiotic disturbances across structural, protein, and genomic levels. Our goal is to spur new research directions and therapeutic avenues.

6.
Birth Defects Res ; 116(4): e2342, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38632851

ABSTRACT

BACKGROUND: Abortion and fetal death are common in fetuses with holoprosencephaly, so genetic examinations often have to be made in a post-mortem setting. The efficiency of the conventional karyotyping using cultured fibroblasts in these situations is limited due to frequent culture failure. In the current study, archived cases of holoprosencephaly, where post-mortem genetic evaluation was requested and sufficient frozen material was available, were reevaluated using the quantitative fluorescence polymerase chain reaction (QF-PCR) technique. METHODS: Testing for aneuploidies of chromosomes 13, 15, 16, 18, 21, 22, X, and Y with the QF-PCR technique was carried out on DNA isolated from archived frozen chorionic villi in seven cases of holoprosencephaly. RESULTS: QF-PCR was successful in all seven cases. Two cases of trisomy 13, two cases of triploidy, and one case of trisomy 18 was found meaning a 71% diagnostic yield. The success rate of QF-PCR (100%, 7/7) was superior compared to conventional karyotyping (43%, 3/7). CONCLUSIONS: Rapid aneuploidy testing using the QF-PCR technique is a simple, reliable, time- and cost-effective method sufficient to conclude the etiologic investigation in the majority of holoprosencephaly cases post-mortem.


Subject(s)
Holoprosencephaly , Pregnancy , Female , Humans , Prenatal Diagnosis/methods , Aneuploidy , Polymerase Chain Reaction/methods , Karyotyping
7.
Hum Reprod Open ; 2024(2): hoae014, 2024.
Article in English | MEDLINE | ID: mdl-38559895

ABSTRACT

STUDY QUESTION: Do extracellular vesicles (EVs) secreted by aneuploid human embryos possess a unique transcriptomic profile that elicits a relevant transcriptomic response in decidualized primary endometrial stromal cells (dESCs)? SUMMARY ANSWER: Aneuploid embryo-derived EVs contain transcripts of PPM1J, LINC00561, ANKRD34C, and TMED10 with differential abundance from euploid embryo-derived EVs and induce upregulation of MUC1 transcript in dESCs. WHAT IS KNOWN ALREADY: We have previously reported that IVF embryos secrete EVs that can be internalized by ESCs, conceptualizing that successful implantation to the endometrium is facilitated by EVs. Whether these EVs may additionally serve as biomarkers of ploidy status is unknown. STUDY DESIGN SIZE DURATION: Embryos destined for biopsy for preimplantation genetic testing for aneuploidy (PGT-A) were grown under standard conditions. Spent media (30 µl) were collected from euploid (n = 175) and aneuploid (n = 140) embryos at cleavage (Days 1-3) stage and from euploid (n = 187) and aneuploid (n = 142) embryos at blastocyst (Days 3-5) stage. Media samples from n = 35 cleavage-stage embryos were pooled in order to obtain five euploid and four aneuploid pools. Similarly, media samples from blastocysts were pooled to create one euploid and one aneuploid pool. ESCs were obtained from five women undergoing diagnostic laparoscopy. PARTICIPANTS/MATERIALS SETTING METHODS: EVs were isolated from pools of media by differential centrifugation and EV-RNA sequencing was performed following a single-cell approach that circumvents RNA extraction. ESCs were decidualized (estradiol: 10 nM, progesterone: 1 µM, cAMP: 0.5 mM twice every 48 h) and incubated for 24 h with EVs (50 ng/ml). RNA sequencing was performed on ESCs. MAIN RESULTS AND THE ROLE OF CHANCE: Aneuploid cleavage stage embryos secreted EVs that were less abundant in RNA fragments originating from the genes PPM1J (log2fc = -5.13, P = 0.011), LINC00561 (log2fc = -7.87, P = 0.010), and ANKRD34C (log2fc = -7.30, P = 0.017) and more abundant in TMED10 (log2fc = 1.63, P = 0.025) compared to EVs of euploid embryos. Decidualization per se induced downregulation of MUC1 (log2fc = -0.54, P = 0.0028) in ESCs as a prerequisite for the establishment of receptive endometrium. The expression of MUC1 transcript in decidualized ESCs was significantly increased following treatment with aneuploid compared to euploid embryo-secreted EVs (log2fc = 0.85, P = 0.0201). LARGE SCALE DATA: Raw data have been uploaded to GEO (accession number GSE234338). LIMITATIONS REASONS FOR CAUTION: The findings of the study will require validation utilizing a second cohort of EV samples. WIDER IMPLICATIONS OF THE FINDINGS: The discovery that the transcriptomic profile of EVs secreted from aneuploid cleavage stage embryos differs from that of euploid embryos supports the possibility to develop a non-invasive methodology for PGT-A. The upregulation of MUC1 in dESCs following aneuploid embryo EV treatment proposes a new mechanism underlying implantation failure. STUDY FUNDING/COMPETING INTERESTS: The study was supported by a Marie Sklodowska-Curie Actions fellowship awarded to SM by the European Commission (CERVINO grant agreement ID: 79620) and by a BIRTH research grant from Theramex HQ UK Ltd. The authors have no conflicts of interest to declare.

8.
Front Mol Biosci ; 11: 1366113, 2024.
Article in English | MEDLINE | ID: mdl-38560520

ABSTRACT

Kinesin motors are a large family of molecular motors that walk along microtubules to fulfill many roles in intracellular transport, microtubule organization, and chromosome alignment. Kinesin-7 CENP-E (Centromere protein E) is a chromosome scaffold-associated protein that is located in the corona layer of centromeres, which participates in kinetochore-microtubule attachment, chromosome alignment, and spindle assembly checkpoint. Over the past 3 decades, CENP-E has attracted great interest as a promising new mitotic target for cancer therapy and drug development. In this review, we describe expression patterns of CENP-E in multiple tumors and highlight the functions of CENP-E in cancer cell proliferation. We summarize recent advances in structural domains, roles, and functions of CENP-E in cell division. Notably, we describe the dual functions of CENP-E in inhibiting and promoting tumorigenesis. We summarize the mechanisms by which CENP-E affects tumorigenesis through chromosome instability and spindle assembly checkpoints. Finally, we overview and summarize the CENP-E-specific inhibitors, mechanisms of drug resistances and their applications.

9.
Article in English | MEDLINE | ID: mdl-38578603

ABSTRACT

PURPOSE: To present the developed preimplantation genetic testing (PGT) for spinocerebellar ataxia type 1 (SCA1) and the outcomes of IVF with PGT. METHODS: PGT was performed for two unrelated couples from the Republic of Sakha (Yakutia) with the risk of SCA1 in one spouse. We have developed a system for PGT of a monogenic disease (PGT-M) for SCA1, which includes the analysis of a panel of 11 polymorphic STR markers linked to the ATXN1 gene and a pathogenic variant of the ATXN1 gene using nested PCR and fragment analysis. IVF/ICSI programs were performed according to standard protocols. Multiple displacement amplification (MDA) was used for whole genome amplification (WGA) and array comparative genomic hybridization (aCGH) for aneuploidy testing (PGT-A). RESULTS: Eight STRs were informative for the first couple and ten for the second. Similarity of the haplotypes carrying pathogenic variants of the ATXN1 gene was noted. In the first case, during IVF/ICSI-PGT, three embryos reached the blastocyst stage and were biopsied. One embryo was diagnosed as normal by maternal STR haplotype and the ATXN1 allele. PGT-A revealed euploidy. The embryo transfer resulted in a singleton pregnancy, and a healthy boy was born. Postnatal diagnosis confirmed normal ATXN1. In the second case, two blastocysts were biopsied. Both were diagnosed as normal by PGT-M, but PGT-A revealed aneuploidy. CONCLUSION: Birth of a healthy child after PGT for SCA1 was the first case of successful preimplantation prevention of SCA1 for the Yakut couple and the first case of successful PGT for SCA1 in Russia.

10.
Eur J Obstet Gynecol Reprod Biol ; 297: 59-64, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38581886

ABSTRACT

RESEARCH QUESTION: Conflicting data exists regarding whether a younger age of donors has a negative influence on the outcomes of oocyte donation cycles. Is there any correlation between a younger age of donors and the rate of embryonic aneuploidy in oocyte donation cycles? DESIGN: Retrospective study including 515 oocyte donation cycles carried out between February 2017 and November 2022. Comprehensive chromosomal screening was performed on 1831 blastocysts. 1793 had a result which were categorised into groups based on the age of the donor: 18-22 (n = 415), 23-25 (n = 600), 26-30 (n = 488), and 31-35 years (n = 290). The analysis aimed to determine the percentage of biopsy samples that were euploid and the number that were aneuploid, relative to the age group of the oocyte donor. Additionally, linear regression was employed to examine the relationship between age and the proportion of aneuploid embryos, while controlling for relevant variables. RESULTS: Aneuploidy increased predictably with donor age: 18-22 years: 27.5 %; 23-25 years: 31.2 %; 26-30 years: 31.8 %; and 31-35 years: 38.6 %. In the donor group aged 31-35 years, a higher percentage of aneuploid embryos was observed compared to younger donors in univariate analysis (OR: 1.66, 95 % CI: 1.21-2.29, p = 0.002) and multivariate logistic analysis (OR: 2.65, 95 % CI: 1.67-4.23, p < 0.001). The rates of embryonic mosaicism revealed no significant differences. CONCLUSION: The lowest risk of embryonic aneuploidy was found among donors aged <22 years. Conversely, an elevated prevalence was evident within the donor group aged 31-35 years, in contrast to the younger cohorts. The incidence of mosaic embryos remained consistent across all age groups.

11.
Reprod Biomed Online ; 49(1): 103858, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38648711

ABSTRACT

RESEARCH QUESTION: What is the clinical outcome of the first attempt at conception between two embryo selection methods, blastocyst morphology and preimplantation genetic testing for aneuploidies (PGT-A), chosen at the initial physician IVF consultation? DESIGN: In this prospective analysis, a clinical decision regarding embryo selection, blastocyst morphology (group A) or PGT-A (group B) was made during initial physician IVF consultation. Female infertility patients were matched based on maternal age (mean 32.6 ± 3.6 years; range 25-43 years) and a similar time frame of oocyte retrieval. The primary outcome was live birth rate from the initial consultation to the first conception attempt for all female patients and for a subset analysis of patients aged <35 years. RESULTS: The inclusion of PGT-A (group B) for embryo selection during the initial physician IVF consultation resulted in 23 additional women out of the total 100 achieving a healthy live birth following the first conception attempt in this maternally age-matched infertile population (group B = 72.0% versus group A = 49.0%; P = 0.0014). This same benefit was observed for age-matched, younger infertility patients (<35 years), with live birth rates from the initial consultation being significantly higher when the upfront clinical decision included PGT-A for embryo selection (group B = 76.7% versus group A = 53.4%; P = 0.0052). Interestingly, 17 women from group B would have received an aneuploid embryo transfer if selection had been determined by blastocyst morphology alone, as their best-grade embryo was aneuploid. CONCLUSIONS: This prospective analysis from the initial physician IVF consultation revealed that euploid embryo selection significantly improved live birth potential with the first conception attempt, even for younger women with infertility.

12.
Mol Cytogenet ; 17(1): 9, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627791

ABSTRACT

Trisomy 20 has been shown to be one of the most frequent rare autosomal trisomies in patients that undergo genome-wide noninvasive prenatal testing. Here, we describe the clinical outcomes of cases that screened positive for trisomy 20 following prenatal genome-wide cell-free (cf.) DNA screening. These cases are part of a larger cohort of previously published cases. Members of the Global Expanded NIPT Consortium were invited to submit details on their cases with a single rare autosomal aneuploidy following genome-wide cfDNA screening for retrospective analysis. Clinical details including patient demographics, test indications, diagnostic testing, and obstetric pregnancy outcomes were collected. Genome-wide cfDNA screening was conducted following site-specific laboratory procedures. Cases which screened positive for trisomy 20 (n = 10) were reviewed. Clinical outcome information was available for 90% (9/10) of our screen-positive trisomy 20 cases; the case without diagnostic testing ended in a fetal demise. Of the nine cases with outcome information, one was found to have a mosaic partial duplication (duplication at 20p13), rather than a full trisomy 20. Only one case in the study cohort had placental testing; therefore, confined placental mosaicism could not be ruled out in most cases. Adverse pregnancy outcomes were seen in half of the cases, which could suggest the presence of underlying confined placental mosaicism or mosaic/full fetal trisomy 20. Based on our limited series, the likelihood of true fetal aneuploidy is low but pregnancies may be at increased risk for adverse obstetric outcomes and may benefit from additional surveillance.

13.
Asian Bioeth Rev ; 16(2): 223-232, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38586573

ABSTRACT

In recent years, preimplantation genetic testing (PGT) of IVF embryos have gained much traction in clinical assisted reproduction for preventing various genetic defects, including Down syndrome. However, such genetic tests inevitably reveal the sex of IVF embryos by identifying the sex (X and Y) chromosomes. In many countries with less stringent IVF regulations, information on the sex of embryos that are tested to be genetically normal is readily shared with patients. This would thus present Muslim patients with unintended opportunities for sex selection based on personal or social biases without any pressing need or valid medical reason. Additionally, there are other patients who claim using PGT for preventing genetic defects as a pretext or "convenient excuse," with a secret intention to do sex selection when it is banned in their home country. Currently, non-medical sex selection is a highly-controversial and hotly debated issue in Islam, because there is generally a strong preference for having sons over daughters due to widespread cultural norms of elderly parents depending on their sons for financial support, as well as the need for male heirs to continue the family lineage within the backdrop of local patriarchal cultures. There is a risk of gender imbalance and social disequilibrium occurring in Islamic societies due to prevalent sex selection. Hence, the question is whether opportunistic sex selection with PGT would contravene Islamic ethics and principles, which will thus be discussed here.

14.
Cureus ; 16(3): e55847, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38590493

ABSTRACT

The genetics of Down syndrome (DS) and Klinefelter syndrome (KS) are a nondisjunction of autosomal and sex chromosomes, respectively, resulting in aneuploidies. Less than 70 cases of concurrent Down-Klinefelter syndrome (DS-KS) have been reported in the literature. We report the case of a five-month-old Indian child with a rare double aneuploidy resulting in DS-KS. A five-month-old boy born to non-consanguineously married parents presented with failure to thrive and dysmorphic facies. The family history was unremarkable. On examination, he had an upward eye slant, a depressed nasal bridge, a horizontal crease in the left hand, and a sandal gap. A clinical diagnosis of the Down phenotype was considered. Karyotype analysis revealed the presence of double aneuploidy (48, XXY,+21) suggestive of DS-KS. Down-Klinefelter syndrome presents with the DS phenotype at birth, and the characteristic KS phenotype develops in early infancy and apparently manifests during puberty only. Early diagnosis is required for parental counseling and planning for future pregnancies. In children with a typical Down syndrome phenotype, chromosomal analysis is highly recommended. The diagnosis of DS-KS at the earliest has implications for these children's short-term and long-term outcomes. It helps in planning the subsequent pregnancy with appropriate genetic testing and counseling to avoid the risk of another child with trisomy.

15.
Cell Mol Life Sci ; 81(1): 194, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653846

ABSTRACT

Sex chromosome aneuploidies are among the most common variations in human whole chromosome copy numbers, with an estimated prevalence in the general population of 1:400 to 1:1400 live births. Unlike whole-chromosome aneuploidies of autosomes, those of sex chromosomes, such as the 47, XXY aneuploidy that causes Klinefelter Syndrome (KS), often originate from the paternal side, caused by a lack of crossover (CO) formation between the X and Y chromosomes. COs must form between all chromosome pairs to pass meiotic checkpoints and are the product of meiotic recombination that occurs between homologous sequences of parental chromosomes. Recombination between male sex chromosomes is more challenging compared to both autosomes and sex chromosomes in females, as it is restricted within a short region of homology between X and Y, called the pseudo-autosomal region (PAR). However, in normal individuals, CO formation occurs in PAR with a higher frequency than in any other region, indicating the presence of mechanisms that promote the initiation and processing of recombination in each meiotic division. In recent years, research has made great strides in identifying genes and mechanisms that facilitate CO formation in the PAR. Here, we outline the most recent and relevant findings in this field. XY chromosome aneuploidy in humans has broad-reaching effects, contributing significantly also to Turner syndrome, spontaneous abortions, oligospermia, and even infertility. Thus, in the years to come, the identification of genes and mechanisms beyond XY aneuploidy is expected to have an impact on the genetic counseling of a wide number of families and adults affected by these disorders.


Subject(s)
Chromosome Pairing , Chromosome Segregation , Meiosis , Humans , Animals , Chromosome Pairing/genetics , Male , Meiosis/genetics , Mice , Chromosome Segregation/genetics , Female , Aneuploidy , Chromosomes, Human, X/genetics , Chromosomes, Human, Y/genetics , Sex Chromosomes/genetics , Crossing Over, Genetic/genetics
16.
Article in English | MEDLINE | ID: mdl-38642269

ABSTRACT

PURPOSE: Various screening techniques have been developed for preimplantation genetic testing for aneuploidy (PGT-A) to reduce implantation failure and miscarriages in women undergoing in vitro fertilisation (IVF) treatment. Among these methods, the Oxford nanopore technology (ONT) has already been tested in several tissues. However, no studies have applied ONT to polar bodies, a cellular material that is less restrictively regulated for PGT-A in some countries. METHODS: We performed rapid short nanopore sequencing on pooled first and second polar bodies of 102 oocytes from women undergoing IVF treatment to screen for aneuploidy. An automated analysis pipeline was developed with the expectation of three chromatids per chromosome. The results were compared to those obtained by array-based comparative genomic hybridisation (aCGH). RESULTS: ONT and aCGH were consistent for 96% (98/102) of sample ploidy classification. Of those samples, 36 were classified as euploid, while 62 were classified as aneuploid. The four discordant samples were assessed as euploid using aCGH but classified as aneuploid using ONT. The concordance of the ploidy classification (euploid, gain, or loss) per chromosome was 92.5% (2169 of 2346 of analysed chromosomes) using aCGH and ONT and increased to 97.7% (2113/2162) without the eight samples assessed as highly complex aneuploid using ONT. CONCLUSION: The automated detection of the ploidy classification per chromosome and shorter duplications or deletions depending on the sequencing depth demonstrates an advantage of the ONT method over standard, commercial aCGH methods, which do not consider the presence of three chromatids in pooled polar bodies.

17.
Sci Rep ; 14(1): 8135, 2024 04 07.
Article in English | MEDLINE | ID: mdl-38584220

ABSTRACT

Aneuploidy is a hallmark of cancers, but the role of aneuploidy-related genes in lung adenocarcinoma (LUAD) and their prognostic value remain elusive. Gene expression and copy number variation (CNV) data were enrolled from TCGA and GEO database. Consistency clustering analysis was performed for molecular cluster. Tumor microenvironment was assessed by the xCell and ESTIMATE algorithm. Limma package was used for selecting differentially expressed genes (DEGs). LASSO and stepwise multivariate Cox regression analysis were used to establish an aneuploidy-related riskscore (ARS) signature. GDSC database was conducted to predict drug sensitivity. A nomogram was designed by rms R package. TCGA-LUAD patients were stratified into 3 clusters based on CNV data. The C1 cluster displayed the optimal survival advantage and highest inflammatory infiltration. Based on integrated intersecting DEGs, we constructed a 6-gene ARS model, which showed effective prediction for patient's survival. Drug sensitivity test predicted possible sensitive drugs in two risk groups. Additionally, the nomogram exhibited great predictive clinical treatment benefits. We established a 6-gene aneuploidy-related signature that could effectively predict the survival and therapy for LUAD patients. Additionally, the ARS model and nomogram could offer guidance for the preoperative estimation and postoperative therapy of LUAD.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , DNA Copy Number Variations/genetics , Adenocarcinoma of Lung/genetics , Algorithms , Aneuploidy , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Tumor Microenvironment
18.
Am J Med Genet C Semin Med Genet ; : e32083, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38441278

ABSTRACT

Despite affecting in 1 in every 1000 females, remarkably little is known about trisomy X syndrome (47,XXX), especially among older adults who are undiagnosed. In this study, we aimed to determine the prevalence of 47,XXX among females enrolled in the Million Veterans Program (MVP; mean age 50.2 ± 13.6 years), and compare broad health outcomes between females with 47,XXX and 46,XX matched controls. We identified 61 females with an additional X chromosome, corresponding to a prevalence of 103 per 100,000 females; 27.9% had been clinically diagnosed. Females with 47,XXX had taller stature (+6.1 cm, p < 0.001), greater rate of outpatient encounters (p = 0.026), higher odds of kidney disease (odds ratio [OR] = 12.3; 95% confidence interval [CI] 2.9-51.8), glaucoma (OR = 5.1; 95% CI 1.5-13.9), and congestive heart failure (OR = 5.6; 95% CI 1.4-24.2), and were more likely to be unemployed (p = 0.008) with lower annual income (p = 0.021) when compared with 46,XX controls of the same age and genetic ancestry. However, there were no differences in the rates of other encounter types, Charlson Comorbidity Index, all other medical and psychological diagnoses, military service history or quality of life metrics. In conclusion, in this aging and predominately undiagnosed sample, 47,XXX conferred few differences when compared with matched controls, offering a more reassuring perspective to the trisomy X literature.

19.
Article in English | MEDLINE | ID: mdl-38454888

ABSTRACT

The phenotype of SCA patients are diversities, make prenatal counseling and parental decision-making following the prenatal diagnosis of SCA more complicated and challenging. NIPT has higher sensitivity and specificity in screening trisomy 21 syndrome, but the effectiveness of NIPT in detecting SCA is still controversial. This study is a large-scale retrospective cohort of positive SCA screened from unselected singleton pregnancies by non-invasive prenatal testing (NIPT) from a single prenatal center of a tertiary hospital. Clinical information, indications, diagnostic results, ultrasound findings, pregnancy determinations, and follow-up were reviewed and analyzed. 596 cases of SCA positive were screened out of 122 453, giving a positive detection rate of 0.49%. 510 cases (85.6%) conducted with amniocentesis to detect fetal chromosome, of which 236 were confirmed as true positive of SCA with PPV of 46.3% (236/510). Of the 236 cases confirmed as true positive SCA, 114 cases (48.3%)chose to terminate the pregnancy (93.0%, 65.3%, 15.4% and 10.9% for 45,X, 47,XXY, 47,XXX and 47,XYY, respectively), 122 cases (51.7%) elected to continue the pregnancy. In conclusions, NIPT as a first-tier routine method for screening autosomal aneuploidies, also could play an important role in screening SCA. Low-risk pregnant women are the main indication for the detection of SCA as NIPT test provides to non-selective population. For 47,XXX and 47,XYY with mild phenotype, couples would like to continue the pregnancy. But for 45,X and 47,XXY, parents apt to terminate pregnancy no matter ultrasound abnormalities were found or not.

20.
Cell Rep ; 43(4): 113988, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38517886

ABSTRACT

The basal breast cancer subtype is enriched for triple-negative breast cancer (TNBC) and displays consistent large chromosomal deletions. Here, we characterize evolution and maintenance of chromosome 4p (chr4p) loss in basal breast cancer. Analysis of The Cancer Genome Atlas data shows recurrent deletion of chr4p in basal breast cancer. Phylogenetic analysis of a panel of 23 primary tumor/patient-derived xenograft basal breast cancers reveals early evolution of chr4p deletion. Mechanistically we show that chr4p loss is associated with enhanced proliferation. Gene function studies identify an unknown gene, C4orf19, within chr4p, which suppresses proliferation when overexpressed-a member of the PDCD10-GCKIII kinase module we name PGCKA1. Genome-wide pooled overexpression screens using a barcoded library of human open reading frames identify chromosomal regions, including chr4p, that suppress proliferation when overexpressed in a context-dependent manner, implicating network interactions. Together, these results shed light on the early emergence of complex aneuploid karyotypes involving chr4p and adaptive landscapes shaping breast cancer genomes.


Subject(s)
Breast Neoplasms , Gene Regulatory Networks , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Animals , Mice , Chromosomes, Human, Pair 4/genetics , Cell Proliferation/genetics , Chromosome Aberrations , Cell Line, Tumor , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...